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Numerical model of self-propulsion in a fluid

D. J. J. Farnell1,†, T. David2 and D. C. Barton3

1Unit of Ophthalmology, School of Clinical Science, Department of Medicine,
Daulby Street, University of Liverpool, Liverpool L69 3GA, UK

2Department of Mechanical Engineering, University of Canterbury,
Private Bag 4800, Christchurch, New Zealand

3School of Mechanical Engineering, University of Leeds, Woodhouse Lane,
Leeds LS2 9JT, UK

We provide initial evidence that a structure formed from an articulated series of linked
elements, where each element has a given stiffness, damping and driving term with respect to
its neighbours, may ‘swim’ through a fluid under certain conditions. We derive a Lagrangian
for this system and, in particular, we note that we allow the leading edge to move along the
x-axis. We assume that no lateral displacement of the leading edge of the structure is possible,
although head ‘yaw’ is allowed. The fluid is simulated using a computational fluid dynamics
technique, and we are able to determine and solve Euler–Lagrange equations for the
structure. These two calculations are solved simultaneously by using a weakly coupled solver.
We illustrate our method by showing that we are able to induce both forward and backward
swimming. A discussion of the relevance of these simulations to a slowly swimming body,
such as a mechanical device or a fish, is given.

Keywords: numerical; simulation; self-propulsion; fluid; structure
1. INTRODUCTION

In this article, we wish to show by using a numerical
approach that a simple articulated structure may
propel itself through a fluid, and we provide prelimi-
nary investigations to illustrate our method. We shall
assume that the fluid may be viewed as two-dimen-
sional (2D) continuum (such as in a soap film) and that
our structure has no depth, and so may be assumed to
be one-dimensional (1D).We restrict our simulations to
those cases in which the motion of the mechanical
structure lies in the 2D plane. Another explicit
assumption of the calculations is that the head of the
structure always lies on the x-axis and points in the
direction of motion. We wish to present the method in
this article and illustrate this approach by looking at
cases that have relatively low Reynolds number (Re) of
approximately 250. We note that this choice for Re aids
numerical stability, and we intend to consider the more
challenging situation of higher Re in future
calculations.

Experiments concerning the properties of soap films
have recently been carried out (Martin & Wu 1995;
Chomaz&Cathalau 1996;Rutgers et al. 1996; Zang et al.
2000), and these systems have been proposed as the
experimental versions of theoretical 2D liquids. Indeed,
we note that particularly interesting fluidic properties
were observed when a silk filament was introduced into
the flowing soap film (Zang et al. 2000). Such flapping
filaments or flags have been pointed out to have a clear
relevance to swimming fishes (Huber 2000).
orrespondence (d.farnell@liverpool.ac.uk).
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We note that problems that are conceptually similar
to the problem of our ‘swimming structure’ have
previously been treated with considerable success by
using a so-called ‘weakly coupled’ solver. We shall
adopt this approach here, and examples of such
problems are a single filament (Farnell et al. 2004a)
and coupled filaments in a flowing soap film (Farnell
et al. 2004b), and the motion of the leaflets in artificial
heart valves (Horsten 1990; Fenlon & David 2001a,b;
Farnell et al. 2004c). Our approach has therefore been
extensively tested for these systems; thus, we shall not
extensively test the methodology again here, and the
interested reader is referred to these references for more
information. Furthermore, the validity and accuracy of
our approach has also been proven in these extensive
earlier calculations. We now wish to extend the range of
applicability of our approach and hope only to show
that, in theory, a simple articulated structure is able to
propel itself through a fluid.

We note that two main methods have been used
in the past to investigate theoretically the motion of
elongated animals in fluids. Taylor’s theory (Taylor
1952) was based essentially on a resistive model,
whereas that of Lighthill (1960) used a ‘reactive’
analysis, where the investigation concentrated on the
reactive forces between a small volume of fluid and
the animal’s surface in contact with the fluid.
However, a review by Lighthill (1969) showed that
the resistive method seemed to provide the best
results for elongated vertebrae. The swimming action
of fishes has also been studied both experimentally
(Gray 1933, 1955; D’Août & Aerts 1997, 1999;
Drucker & Lauder 1999; Sfaliotakis et al. 1999)
q 2005 The Royal Society
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Figure 1. The computational fluid domain. Note that non-slip boundary conditions are imposed on the fluid mesh edges AD and
BC, and that the motion of the mechanical structure is imposed on the fluid as a moving boundary condition. Stress-free
boundary conditions are imposed at both the inlet AB and the outlet CD.
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and theoretically (Gray & Hancock 1955; Williams et
al. 1995; Liu et al. 1996; Sigvardt & Williams 1996;
Carling et al. 1998; Liu & Kawachi 1999; Long et al.
2002; Huber 2000).

We begin our treatment of this system by firstly
considering our mathematical and numerical method-
ology in detail. We then illustrate our methodology by
presenting results for our initial studies of this system,
and show that we may induce either backward or
forward motion by simply changing the form of the
driving terms acting along the length of the mechanical
structure. We then discuss the relevance of our studies
to swimming action of fishes and/or mechanical devices
(Sfaliotakis et al. 1999). We conclude by summarizing
our results and considering other possible future
applications.
2. METHOD

2.1. The Navier–Stokes equations

We assume that the fluid is incompressible, with a
viscosity that is Newtonian in form, and that the
density is constant. In addition, we use similar
assumptions to those used in experiments for
measuring the viscosity of soap films (Martin &
Wu 1995). The flow is treated as being isothermal
and laminar, and an argument for this assumption is
given below. The relevant time-dependent equations
are thus given by the Navier–Stokes equations,

D~~u

D~t
ZK

1

r
V~pCnV2 ~~u ; (2.1a)

V$~~u Z 0: (2.1b)

Here, ~~uZf~u; ~vg is the 2D vector field correspond-
ing to the x- and y-directions as shown in figure 1, ~p
is the fluid pressure, r is the density of the fluid and
n is the kinematic viscosity of the fluid. We non-
dimensionalize the fluid equations such that
J. R. Soc. Interface (2005)
x Z
~x

L
; y Z

~y

L
; u Z

~u

U
; v Z

~v

U
;

t Z
~tU

L
; pZ

~p

rU 2
; ð2:2Þ

where L is the actual (dimensional) length of the
mechanical structure and U is a (dimensional)
characteristic speed (e.g. the swimming speed of the
mechanical structure). Equation (2.1a,b) now
becomes

D~u

Dt
ZKVpCReK1V2~u; (2.3a)

V$~u Z 0; (2.3b)

where the Re is given by ReZLU=n. We assume the
fluid domain is as given in figure 1; namely, a
channel with an inlet and outlet. Non-slip boundary
conditions are assumed on the walls of the channel,
and ‘natural’ (or stress-free) boundary conditions are
assumed at the inlet and outlet. We note that the
width h of the channel is also set to one (non-
dimensional) unit. The width of the mechanical
structure is assumed to be 0.04 non-dimensional
units and we set the Re to be ReZ250, as this aids
numerical stability (see §4). The length H of the
channel is 15 (non-dimensional) units, far enough
away from the mechanical structure so that the
outlet boundary has negligible effect. The mechanical
structure is placed initially approximately at the
mid-point of the channel. Details (see also Fenlon
et al. 2001; Farnell et al. 2004a,b) of performing a
computational fluid dynamics (CFD) calculation are
presented in §5. A fuller investigation of the effects
of varying the values for these parameters on our
calculations will be considered in a future article.
3. THE EULER–LAGRANGE EQUATIONS

Similar to earlier calculations (Williams et al. 1995,
Sigvardt & Williams 1996; Carling et al. 1998), we

http://rsif.royalsocietypublishing.org/
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assume that the mechanical structure is composed of
N equal length, homogeneous, rigid elements. The
(dimensional) length of each element is ~l and the
(dimensional) mass of each element is ~m. However, in
our case, the elements are fixed to one another at their
hinge (or fulcrum) points, and the mechanical structure
is thus assumed to be approximated by a form of
N-tuple pendulum, in which each hinge has a positive
spring stiffness coefficient and a positive damping
coefficient associated with it. We assume that no lateral
displacement of the head in the y-direction may occur
where this assumption is supported by experiment
(Gray 1933, 1955). However, head yaw is allowed, as
the angle that the first element makes with the x-axis
does not have to be zero. We note that the leading edge
of the mechanical structure is allowed to move in the x-
direction only. Each element s makes an angle qs with
the horizontal x-axis and the position of the leading
edge of the mechanical structure on the x-axis is given
by ~x0. In analogy with previous studies (Farnell et al.
2004a–c), the Langrangian J may be shown to be
given by

JZ
1

2
~m~l

2 XN
iZ1

XiK1

jZ1

XiK1

kZ1

_qj _qk cosðqj KqkÞ

C
1

2
~m~l

2 XN
iZ1

_qi
XiK1

jZ1

_qj cosðqi KqjÞ

C
1

6
~m~l

2 XN
iZ1

_q
2
i K _~x0 ~m~l

XN
iZ1

XiK1

jZ1

_qj sinðqjÞ

K
1

2
_~x0 ~m~l

XN
iZ1

_qi sinðqiÞC
1

2
_~x
2
0 ~mN

K
1

2

XN
iZ1

~Kiðqi KqiK1Þ2; (3.1)

where the terms due to the stiffness ~Ks at each hinge
are valid only for small values of qsKqsK1; cs (and
that q0Z _q0Z0). Note that the subscript s for the
element angles runs from 1 to N, although we may
define—notationally only—an angle q0, which aids our
definition of the potential energy in equation (3.1).
(However, we do assume that the minimum potential
energy position is given by a profile in which the angle
for the leading edge element is zero.)

The Lagrangian given by equation (3.1) may now be
used to obtain the Euler–Lagrange equations by writing

d

d~t

vJ

v _qs

� �
K

vJ

vqs
Z~f s cs;

d

d~t

vJ

v _~x 0

� �
K

vJ

v~x0
Z~g; (3.2)

where ~f s and ~gs represent non-conservative external
torques and forces, respectively. The function ~f s
represents the externally applied torques exerted on a
given element s, and these torques are non-conserva-
tive. We subdivide the terms within this function into
J. R. Soc. Interface (2005)
two distinct pieces, given by

~f sZK~Csð _qsK _qsK1ÞK ~CsC1ð _qsK _qsC1Þ

C
1

2
~Ds
~lC ~Usð~tÞ: ð3:3Þ

We note that ~Usð~tÞ contains the driving-term to
our equations and corresponds to the ability of
the mechanical structure to cause torques along
its length (see §4 for more details). The
damping terms are thus encoded in the terms
~Csð _qsK _qsK1ÞC ~CsC1ð _qsK _qsC1Þ, and favour a difference
between angular velocities of successive elements (both
above and below a particular element s) that is small.
An inflexible system is thus approximated by having
large values for both ~Ks and ~Cs. The term ~Ds in
equation (3.3) refers to external pressure forces (as
distinct from the internal stiffness and damping terms
or, indeed, the driving terms) acting on the mechanical
structure elements creating a torque of strength 1=2~Ds

~l,
which in this case are caused by the fluid pressures
forces generated by the liquid. For the present case, we
can show from an order of magnitude argument that the
pressure forces are much larger than those exerted by
viscosity and hence the viscous shear forces acting
parallel to the N-tuple pendulum are considered
negligible.

We also note that the non-conservative forces for the
leading edge generalized variable ~x0 are given by

~g ZK
XN
iZ1

~Di sinðqiÞ: (3.4)

We solve these equations using adaptive step-sized
Runge–Kutta method (see Farnell et al. 2004a–c for
more details). Equation (2.3a,b) is solved using a
commercial code (FIDAP). Although our solutions
are mesh independent, we do not fully investigate the
variation of our solution with respect to the width of
mechanical structure and Re. We wish to present only
the initial calculations and thereby investigate whether
our new approach might be used to give reasonable
results. We now non-dimensionalize the Euler–
Lagrange equations by introducing (as before) charac-
teristic scales for mass, length, velocity and time, such
that

m Z
~m

M
; l Z

~l

L
; t Z

~tU

L
: (3.5)

The quantities ~Ks, ~Cs and ~Ds may also be non-
dimensionalized in a similar manner to give

Ks Z
~Ks

U 2M
; Cs Z

~Cs

UML
; Ds Z

~DsL

MU 2
: (3.6)

The non-dimensionalized Euler–Lagrange equations
for the element angles are given by
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ReZ250 as this aids numerical stability. Note that
inertial forces are dominant and viscous forces are
usually neglected for 103!Re!105 (Sfaliotakis et al.
1999).

The fluid is initially at rest and non-slip boundary
conditions are imposed on the walls of the channel,
while the inlet and outlet have stress-free boundary
conditions. We choose a fluid mesh such that there are
at least four mesh nodes within the width of the
mechanical structure. All of the parameters above are
chosen to be in reasonable agreement with those
experimental values given elsewhere (D’Août & Aerts
1997, 1999; Drucker & Lauder 1999; Sfaliotakis et al.
1999).

The values for the stiffness, damping and driving
terms are chosen to induce either forward or backward
swimming. For the case of the backward swimming
mode,we keep the stiffness and damping terms constant,
where

Ks Z 0:75; Cs Z 0:01 c sZ f1;.;Ng; (4.1)

and we set the driving terms to have a travelling wave
form, given by

UsðtÞZA sin 2putC
2plðsK1Þ

N

� �
: (4.2)

In this case, AZ0.03 and uZ1.0. The stiffness and
damping terms for the forward swimming mode are set
to be constant but of greater magnitude (to reduce head
yaw), where
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XsK1

iZ1

€qi cosðqs KqiÞ N KsC
1

2

� �

C
XN
iZs

€qi cosðqs KqiÞ N K iC
1

2

� �

K
1

6
€qs C

XsK1

iZ1

_q
2
i sinðqs KqiÞ N KsC

1

2

� �

C
XN
iZs

_q
2
i sinðqs KqiÞ N K iC

1

2

� �

C
Ks

ml2
ðqs KqsK1ÞC

KsC1

ml2
ðqs KqsC1Þ

C
Cs

ml2
ð _qs K _qsK1ÞC

CsC1

ml2
ð _qs K _qsC1Þ

K
1

l
€x0 N KsC

1

2

� �
sinðqsÞ

Z
Ds

2ml
C

UsðtÞ
ml2

; ð3:7Þ

and the non-dimensionalized Euler–Lagrange equation
for the leading-edge term is given by

N

l2
€x0 K

1

l

XN
iZ1

N K iC
1

2

� �
€qi sinðqiÞ

K
1

l

XN
iZ1

N K iC
1

2

� �
_q
2
i cosðqiÞ

ZK
1

ml2

XN
iZ1

Di sinðqiÞ: ð3:8Þ

The pressure force acting on an element of the
mechanical structure in the dimensional system in our
Euler–Lagrange equations (namely ~Ds) must be related
to the pressure difference (between those pressures
acting on the bottom, ~pbottoms , and the top, ~ptops , of a
mechanical structure element) such that

d~ps Z ~pbottoms K ~ptops 0 ~Ds Z~ld~ps: (3.9)

The non-dimensional form of this equation is given by

Ds Z
rfL

2

M

� �
ldps ZFldps; (3.10)

where rf is the 2D density of the fluid. Furthermore, we
note that we may express the mass of the mechanical
structure in the experimental (dimensional) system in
terms of a linear density, s, such that FZrfL=s. Again,
note that we assume that our idealized mechanical
structure is 1D.
Ks Z 5:0; Cs Z 0:1 c sZ f1;.;Ng: (4.3)

The driving terms for the forward swimming mode
are given by

UsðtÞZ
AðsK1Þ

N
sin 2putC

2plðsK1Þ
N

� �
; (4.4)

withAZ0.2 anduZ1.0.We see fromequation (4.4) that
the driving terms of the mechanical structure are much
stronger at the tail than at the head for the forward
swimming mode. Our calculations were tested for
4. VALUES FOR THE PARAMETERS

We choose values for the parameters such that they are
consistent with earlier simulations for different,
although related, systems (Fenlon & David 2001a,b;
Farnell et al. 2004a–c). In particular, we choose a value
for F of unity. As we wish to prove the principle of
whether we are able to simulate any of the observed
properties of the system, we feel that this is a reasonable
assumption. In a similar manner, we set the Re to be
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